3000A Series

Precision Multi Product Calibrator

Calibration Manual

TABLE OF CONTENTS

PREPARING FOR CALIBRATION	3
INTRODUCTION EQUIPMENT REQUIRED OPTIONAL EQUIPMENT EQUIPMENT REQUIRED FOR OSCILLOSCOPE (SCPXXX) OPTION CALIBRATION EQUIPMENT REQUIRED FOR POWER (PWR 50 PWR SINE PWR DDS) OPTION CALIBRATION	3 3 4 5
CALIBRATION PASSWORD	6
CHANGING THE CALIBRATION PASSWORD SET NEW PASSWORD	6 8
MANUAL CALIBRATION	10
ENTERING CALIBRATION MODE EXITING CALIBRATION MODE	11 14
CALIBRATION PARAMETERS	15
CONNECTIONS	16
CALIBRATION OF RANGES	17
D.C. VOLTAGE D.C. CURRENT A.C. VOLTAGE A.C. VOLTAGE A.C. CURRENT 2WIRE Ω 4WIRE Ω 4WIRE Ω ACTIVE Ω CAPACITANCE FREQUENCY OUTPUT. INDUCTANCE PRT OSCILLOSCOPE – AMPLITUDE OSCILLOSCOPE – BANDWIDTH. AC POWER (CURRENT OUTPUT)	17 22 27 32 37 41 45 49 53 54 58 62 67 71
DC POWER (CURRENT OUTPUT)	76
	01

Preparing For Calibration

Introduction

The recommended calibration period for the 3000A series calibrators is 12 months. Extended specifications for 6, 12 and 24 month re-calibration periods are available from the 3000A extended specifications

Calibration can be achieved using one of two methods:

- 1. Manual calibration via the front panel controls.
- 2. Automated closed-loop calibration using ProCal calibration software

In both instances the calibrator should be switched on and allowed to warm up for the required period as stated in the operator's manual. Calibration should be performed in a stable environment where the temperature is stable to within +/- 1°C during the calibration.

Equipment Required

To calibrate the 3000A series calibrators the following equipment is required:

1. High Accuracy precision Multimeter (example Transmille 8081 / Agilent 3458A opt 002 / Fluke 8508A)

2. LCR Bridge (example Agilent

3. DC Voltage Source (example Transmille 3000 series multiproduct calibrator, Fluke 55xx series multiproduct calibrator

4. High Accuracy Frequency Counter / GPS Frequency Reference / Off-Air Frequency Reference

Between these four pieces of equipment it is possible to calibrate all basic functions of the 3000 series calibrators. For units fitted with additional options additional equipment is required

Optional Equipment

To perform a full calibration of a 3000A series multiproduct calibrator additional

equipment may be required dependent upon the capabilities of the multimeter being used

For multimeters such as the Agilent 3458A with limited maximum current, a selection of current shunts are required. These current shunts should be suitable for both DC and AC current up to 10kHz (5kHz for 2A Range, 1kHz for 30A range) Suggested current shunt values are listed below, along with the current range they will be used for :

0.1 Ohm – 2.02A to 30A AC/DC
1 Ohm – 202mA to 2A AC/DC
10 Ohm – 20.2mA to 200mA AC/DC
100 Ohm – 2.02mA to 20mA AC/DC

These shunts are also used for multimeters with insufficient current accuracy for low current calibration.

Equipment required for Oscilloscope (SCPXXX) option calibration

To calibrate the Oscilloscope output function of the 3000A series, the following equipment is required

- 1. High Accuracy precision Multimeter
- 2. Frequency Counter / GPS Frequency Standard / Off-air Frequency Standard
- 3. 600MHz 1GHz Oscilloscope (example Agilent Xfinity Series Oscilloscope)

Equipment required for Power (PWR50, PWRSINE, PWRDDS) option calibration

To calibrate the Power output function of the 3000A series, the following equipment is required

- 1. High Accuracy precision Multimeter
- 2. Phase Meter / Oscilloscope
- 3. Distortion Meter / Distortion Analyser (PWRDDS option only)

Calibration Password

Changing the Calibration Password

To navigate to the 'Calibration Password' screen follow the procedure in the section: 'Manual Calibration' to step 3 where the following screen appears:

1. Select **SETUP** using the soft key

2. Use the 'Digital Control' or the 'Arrow Keys' to highlight 'Password' and then press **SELECT** soft key

Select Option Beeper Range Hold	Password	Adapters	
SELECT			CANCEL

3. Press **SELECT** soft key

4. Enter the calibration password (default 0324)

The following screen is displayed for approximately 2 seconds:

and then reverts to:

Lo *	0.00	<u>0</u> 00n	nV	
200mV DC Standby			DC	
CALIBRATE	SETUP	INFO	NEXT	-

The instrument is now ready to be calibrated and the password can be changed.

Set New Password

To change the password, complete the following procedure:

1. Select **SETUP** using the soft key

2. Use the 'Digital Control' or the 'Arrow Keys' to highlight 'Password' and then press **SELECT** soft key

Select Option Beeper Range Hold	Password] Adapters	
SELECT			CANCEL

2. Use the 'Digital Control' or the 'Arrow Keys' to highlight 'Set' and then press **SELECT** soft key

Calibration Pa Enter	Set	End Cal	
SELECT			CANCEL

3. 'Enter New Cal Password' using function control keys, followed by the ENTER key e.g. 3010

The following screen is displayed for approximately 2 seconds:

and then reverts to:

Lo *	0.00	<u>0</u> 00n	nV	
200mV DC Standby			DC	
CALIBRATE	SETUP	INFO	NEXT	

The password has now been changed.

Manual Calibration

Manual Calibration is achieved using the front panel control:

- 1. Digital control
- 2. Function control
- 3. Soft and Arrow keys
- 4. Range up and Down keys
- 5. Output On and Standby keys

Entering Calibration Mode

Lo * 0.0000000V DC Standby +/- POWER SCOPE NEXT

To navigate to the calibration control screen, complete the following procedure:

1. Select **NEXT** using the soft key

Lo †	0.00	<u>0</u> 00n	nV
200mV DC Standby			DC
PWM	RPM	FREQ	NEXT

2. Select **NEXT** using the soft key

3. Select **NEXT** using the soft key

4. Select **CALIBRATE** using the soft key

5. 'Enter Cal Password' using function control keys

The following screen is displayed for approximately 2 seconds:

and then reverts to:

The instrument is now ready to be calibrated.

Should the password be entered incorrectly the screen will display

for approximately 2 seconds and then reverts to:

C	1.000	<u>J</u> UUI	
200mV DC Standby		42-	DC
CALIBRATE	SETUP	INFO	NEXT

Select **CALIBRATE** using the soft key to navigate back to 'Enter Cal Password'

screen and re-enter the password.

Exiting Calibration Mode

After calibration of the 3000A series is complete the calibration program should be ended to avoid any unauthorised or mistaken adjustment of the calibrator. The following procedure should be completed.

1. Select **SETUP** using the soft key

2. Use the 'Digital Control' or the 'Arrow Keys' to highlight 'Password' and then press **SELECT** soft key

Select Option Beeper Range Hold	Password	Adapters	
SELECT			CANCEL

3. Use the 'Digital Control' or the 'Arrow Keys' to highlight 'End Cal' and then press **SELECT** soft key

Calibration	Password	
Enter	Set	End Cal

The calibrator returns to the normal screen.

Calibration Parameters

With the calibration password entered the different parameters of the instrument can be calibrated:

To enter the different parameters, complete the following procedure:

1. Select **CALIBRATE** using the soft key

2. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required parameter e.g. 'DC Volts' and then press **SELECT** soft key

Select Funct DC Volts 2 Wire Ω Induct. Power DC	DC Amps 4 Wire Ω PRT A/D Input	AC Volts Active Ω Scope	AC Amps Capacit. Power AC
SELECT			CANCEL

Depending upon the model and options fitted the available functions will vary

Connections

The output of the 3000A series calibrator should be connected to the precision multimeter as below :

Calibration of Ranges D.C. Voltage

To calibrate the D.C. Voltage parameter, complete the procedure as follows:

1. Select **CALIBRATE** using the soft key

2. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required parameter 'DC Volts' and then press **SELECT** soft key

Select Functi DC Volts 2 Wire Ω Induct. Power DC	on DC Amps 4 Wire Ω PRT A/D Input	AC Volts Active Ω Scope	AC Amps Capacit. Power AC
SELECT	•		CANCEL

- **3.** Connect the calibrator output voltage terminals to the precision Multimeter. Ensure that the Multimeter has been zeroed as a system by shorting out the leads and pressing the null button.
- **4.** Use the 'range up' and 'range down' keys to change the calibration point to 'Zero Calibration'.

Lo ŧ	0.000	00n	nV
200mV DC On	Zero Calibration		DC 200mV DC
RANGE	STORE	UNDO	EXIT

6. To adjust the output, type in the measured value using the keyboard, followed by the 'ENTER' key i.e. 0.00028mV

0.	0	0	0	2	8	ENTER
----	---	---	---	---	---	-------

7. The output can also be adjusted by moving the 'cursor' to the required digit and adjusting the output using the up / down arrows or the digital control

8. The 'SHIFT' key will illuminate to indicate that a change has been made to the calibration of the instrument, however has not yet been stored.

9. To undo the adjustment before storing the changes, press the UNDO soft key. This will remove any changes that have been made to the output of the calibrator.

,	0 0 0 0)00n	nV
200mV DC			DC
Jn	Zero Calibration		200mV DC
RANGE	STORE	UNDO	EXIT

10. Once the output has been adjusted to within specification, the changes can be stored to long term memory. To store the changes permanently, press the STORE soft key

The following 2 screens are displayed briefly to confirm that the calibration factors have been saved.

After displaying these messages, the shift key will also cease to be illuminated

SHIFT

Note: All the calibration points can be adjusted prior to storing the calibration factors (STORE), however if the calibration routine is ended or there is a power failure the new calibration factors will not be saved if STORE has not been pressed.

11. Using the 'RANGE UP' and 'RANGE DOWN' keys, change the output to

- Measure the output, and adjust as required using the process described in steps 6 - 10
- **13.** Use the 'range up' and 'range down' keys to change the calibration point to 'Negative Full Scale'.

- **14.** Measure the output, and adjust as required using the process described in steps **6 10**
- **15.** When calibration of this range is complete press the **RANGE** soft key

16. To continue adjusting other ranges in the DC Voltage function, select 'DC Volts' and select the required range

Select Funct DC Volts 2 Wire Ω Induct. Power DC	ion] DC Amps 4 Wire Ω PRT A/D Input	AC Volts Active Ω Scope	AC Amps Capacit. Power AC
SELECT	Г		CANCEL
Select Rang 200mV DC 1kV DC	e 2V DC	20V DC	200V DC

- **17.** The '2V DC', '20V DC', '200V DC' and '1kV DC' ranges are calibrated in the same manner.
- NOTE : The 'Zero Calibration' points for both the 200V DC and 1kV DC Ranges do not occur at 0V. They take place at 5V and 50V respectively.

D.C. Current

To calibrate the D.C. Current parameter, complete the procedure as follows:

1. Select CALIBRATE using the soft key

2. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required parameter 'DC Amps' and then press **SELECT** soft key

Select FunctionDC VoltsDC Amps2 Wire Ω 4 Wire Ω Induct.PRTPower DCA/D Input	AC Volts Active Ω Scope	AC Amps Capacit. Power AC
SELECT ┥		CANCEL

3. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required range e.g. '200uA DC' and then press **SELECT** soft key

20mA DC	200mA DC
	CANCEL
	20mA DC

4. Connect the calibrator 2A current terminals to the precision Multimeter. Ensure that the Multimeter has been nulled with the leads disconnected

5. Use the 'range up' and 'range down' keys to change the calibration point to 'Zero Calibration' adjustment point

6. Press

and measure the output "Zero Calibration".

7. To adjust the output, type in the measured value using the keyboard, followed by the 'ENTER' key i.e. 0.00028uA

8. The output can also be adjusted by moving the 'cursor' to the required digit and adjusting the output using the up / down arrows or the digital control

Lo ÷	0.00	000	μA	
200µA DC Standby	Zero Calibration		DC 200μA DC	
RANGE	STORE	UNDO	EXIT	

 The 'SHIFT' key will illuminate to indicate that a change has been made to the calibration of the instrument, however has not yet been stored.

10. To undo the adjustment before storing the changes, press the **UNDO** soft key

This will remove any changes that have been made to the output of the calibrator.

11. Once the output has been adjusted to within specification, the changes can be stored to long term memory. To store the changes permanently, press the STORE soft key. The following 2 screens are displayed briefly to confirm that the calibration factors have been saved.

After displaying these messages, the shift key will also cease to be illuminated

SHIFT

Note: All the calibration points can be adjusted prior to storing the calibration factors (STORE), however if the calibration routine is ended or there is a power failure the new calibration factors will not be saved if STORE has not been pressed.

12. Using the 'RANGE UP' and 'RANGE DOWN' keys, change the output to 'Positive Full Scale'

'OS	itive Full Scale			
	÷ 20	00.00	0000	uA
	200μA DC On ►P	Positive Full Sca	le	DC 200μA DC
	RANGE	STORE	UNDO	EXIT

- Measure the output, and adjust as required using the process described in steps 7 – 11
- **14.** Use the 'range up' and 'range down' keys to change the calibration point to 'Negative Full Scale'.

÷ -2	00.00	0000	μΑ
200µA DC On N	Jegative Full Sca	ale	DC 200μA DC
RANGE	STORE	UNDO	EXIT

- Measure the output, and adjust as required using the process described in steps 7 – 11
- **16.** To continue adjusting other ranges in the DC Current function, select 'DC Amps' and select the required range

Select FunctionDC Volts $DC Amps$ 2 Wire Ω 4 Wire Ω Induct.PRTPower DCA/D Input	AC Volts Active Ω Scope	AC Amps Capacit. Power AC
SELECT		CANCEL
Select Range 200µA DC 2mA DC 2A DC 30A DC	20mA DC	200mA DC

17. The '2mA DC', '20mA DC', '200mA DC', '2A DC' and '30A DC' ranges are calibrated in the same manner.

Remember to change the connections when calibrating the 30A range

A.C. Voltage

To calibrate the A.C. Voltage parameter, complete the procedure as follows:

1. Select CALIBRATE using the soft key

2. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required parameter

Select Func	tion		
DC Volts	DC Amps	AC Volts	AC Amps
2 Wire Ω	4 Wire Ω	Active Ω	Capacit.
Induct.	PRT	Scope	Power AC
Power DC	A/D Input		

3. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required range e.g. '200mV AC' and then press **SELECT** soft key

Select Range 200mV AC 2V AC 1kV AC	20V AC	200V AC
SELECT		CANCEL

3. The Calibrator will now change to the 200mV AC range. Use the Range Up / Range Down keys to select the 206Hz Positive Full Scale adjustment point

4. Connect the calibrator output voltage terminals to the precision multimeter. Ensure that the multimeter is in AC Voltage on the appropriate range.

6. To adjust the output enter the value as measured on the multimeter

E.g. measured output = 199.990 mV, use the function control keys

5. The output can also be adjusted by moving the 'cursor' to the required digit and adjusting the output using the up / down arrows or the digital control

[⊭] 20 <u>0.000mV</u>				
200mV AC 206H: On Positive Full Scale 200mV AC				
RANGE STORE UNDO		EXIT		

6. The 'SHIFT' key will illuminate to indicate that a change has been made to the calibration of the instrument, however has not yet been stored.

7. To undo the adjustment before storing the changes, press the UNDO soft key

[⊭] 200.000mV				
200mV AC On F	Positive Full Sca	ale	206Hz 200mV AC	
RANGE	STORE	UNDO	EXIT	

This will remove any changes that have been made to the output of the calibrator.

7. Measure and check the output again and then press **STORE** soft key The following 2 screens are displayed briefly to confirm that the calibration factors have been saved.

	Storing	
	Calibration Stored	
After displa	lying these messages, the shift key will also cease to be illumin SHIFT	atec

Note: All the calibration points can be adjusted prior to storing the calibration factors (STORE), however if the calibration routine is ended or there is a power failure the new calibration factors will not be saved if STORE has not been pressed.

8. Use the 'range up' and 'range down' keys to change the calibration point to

NOTE : The 'Zero Calibration' of the AC Voltage ranges is performed at **20% of full scale**

9. Measure the output as before; if necessary adjust as previously described above.

10. The AC Voltage frequency response is only adjusted at the Full Scale points at different frequencies. A List of the frequencies that each model is adjusted at can be found at the end of the calibration manual.

Use the range up / range down keys to select the AC 10Hz Calibration Point.

NOTE : In many cases only the 206Hz full scale and zero calibration points require adjustment. The Frequency Response of the 3000A series calibrator may not change.

11. Measure the output as before; if necessary adjust as previously described above.

12. Using the range up / range down keys, measure and adjust (if required) all available frequency points for each range. Depending upon the Range selected and the model of 3000A the available frequency points will differ. For a list of available frequency adjustment points, please refer to the section at the end of this manual.

56. When calibration of this range is complete press the **RANGE** soft key Select 'AC Volts' and then '2V AC' and proceed with this range as described above.

DC Volts 2 Wire Ω Induct. Power DC	DC Amps 4 Wire Ω PRT A/D Input	AC Volts Active Ω Scope	AC Amps Capacit. Power AC
SELEC	T		CANCEL
Select Rang 200mV AC 1kV AC	2V AC	20V AC	200V AC

57. The '20V AC', '200V AC' and '1kV AC' ranges are calibrated in the same manner.

Note: The number of frequency (Hz) calibration points will depend upon model of calibrator (3010A, 3041A or 3050A).

A.C. Current

To calibrate the A.C. Current parameter, complete the procedure as follows:

1. Select CALIBRATE using the soft key

2. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required parameter

C Ámps' ar	nd then pres	S SELECT	soft key		
C F	Select Function DC Volts 2 Wire Ω Induct. Power DC	DC Amps 4 Wire Ω PRT A/D Input	AC Volts Active Ω Scope	AC Am Capac Power	nps iit. AC
	→ SELECT				CANCEL

3. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required range e.g. '200µA' and then press **SELECT** soft key

Select Range ≥200µA AC 2mA 2A AC 30A A	AC 20mA AC 200mA AC AC
SELECT	CANCEL

3. The Calibrator will now change to the 200uA AC range. Use the Range Up / Range Down keys to select the 206Hz Positive Full Scale adjustment point

4. Connect the calibrator output voltage terminals to the precision multimeter. Ensure that the multimeter is in AC Current on the appropriate range. Ensure that the correct terminals / current shunt is used for the various current outputs. The 3000A calibrators can output up to 30A AC current, which can blow the fuse / cause damage if the incorrect input is used

6. To adjust the output enter the value as measured on the multimeter

E.g. measured output = 199.990 uA, use the function control keys

5. The output can also be adjusted by moving the 'cursor' to the required digit and adjusting the output using the up / down arrows or the digital control

μο 200.000μΑ					
	200μA AC206HzOnPositive Full Scale200μA AC				
	RANGE	STORE	UNDO	EXIT	

6. The 'SHIFT' key will illuminate to indicate that a change has been made to the calibration of the instrument, however has not yet been stored.

7. To undo the adjustment before storing the changes, press the **UNDO** soft key

This will remove any changes that have been made to the output of the calibrator.

7. Measure and check the output again and then press **STORE** soft key The following 2 screens are displayed briefly to confirm that the calibration factors have been saved.

	Storing	
	Calibration Stored	
After displa	ying these messages, the shift key will also cease to be illuminat	ted

Note: All the calibration points can be adjusted prior to storing the calibration factors (STORE), however if the calibration routine is ended or there is a power failure the new calibration factors will not be saved if STORE has not been pressed.

8. Use the 'range up' and 'range down' keys to change the calibration point to

NOTE : The 'Zero Calibration' of the AC Current ranges is performed at **20% of full scale**

9. Measure the output as before; if necessary adjust as previously described above.

10. The AC Current frequency response is only adjusted at the Full Scale points at different frequencies. A List of the frequencies that each model is adjusted at can be found at the end of the calibration manual.

Use the range up / range down keys to select the AC 10Hz Calibration Point.

NOTE : In many cases only the 206Hz full scale and zero calibration points require adjustment. The Frequency Response of the 3000A series calibrator may not change.

11. Measure the output as before; if necessary adjust as previously described above.

12. Using the range up / range down keys, measure and adjust (if required) all available frequency points for each range. Depending upon the Range selected and the model of 3000A the available frequency points will differ. For a list of available frequency adjustment points, please refer to the section at the end of this manual.

56. When calibration of this range is complete press the **RANGE** soft key Select 'AC Amps' and then '2mA AC' and proceed with this range as described above.

Select FunctionDC VoltsDC2 Wire Ω 4 WInduct.PRPower DCA/D	Amps AC Volts Vire Ω Active Ω T Scope	AC Amps Capacit. Power AC
SELECT		CANCEL
Select Range 200µA AC 2m/ 2A AC 30A	A AC 20mA AC	C 200mA AC
SELECT		CANCEL

57. The '2mA AC', '20mA AC', '200mA AC', '2A AC' and '30A AC' ranges are calibrated in the same manner.

Note: The number of frequency (Hz) calibration points will depend upon model of calibrator (3010A, 3041A or 3050A).

Remember to change the connections when calibrating the <u>30A range</u>

		0	Ð	1000V Max. 2 Wire Ohms
Current connections - 200μA, 2mA, 20mA, 200mA and 2A ranges		0	+	2A Max. 4 Wire Ohms
High current connections 30A range		0	+)	
		0	0	TRG
To calibrate the 2Wire Ω parameter, complete the procedure as follows:

NOTE : The 2Wire Ω output from the 3000A series calibrator is a passive output. This means that the value on the display is the resistance value generated at the terminals.

The resistance cannot be 'altered' to a different output, the value stored is simply the value of the resistor and the connections to the terminal.

For a variable resistance output, the Simulated Resistance output must be used.

1. Select CALIBRATE using the soft key

2. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required parameter '2 Wire Ω ' and then press **SELECT** soft key

Select Function DC Volts DC 2 Wire Ω 4 V Induct. PF Power DC A/	Amps AC Volts Vire Ω Active Ω T Scope D Input	AC Amps Capacit. Power AC	
SELECT +		CANCEL	

3. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required range e.g.

'10 Ω ' and	then press	SELECT Soft	key	
	Select Rar 0 Ω 100 Ω 1 ΜΩ	nge 0.1 Ω 1 kΩ 10 MΩ	1 Ω 10 kΩ 100 MΩ	10 Ω 100 kΩ 1 GΩ
	SELE	CT		CANCEL

3. The Calibrator will now change to the 10 Ω 2 Wire range.

4. Connect the calibrator Voltage (2 Wire output) terminals to the precision multimeter. To ensure an accurate measurement connect as a 4 wire measurement, with both positive leads connected together. Ensure that the multimeter is nulled as a system, including the leads.

6. To adjust the output enter the value as measured on the multimeter

E.g. measured output = 10.00045 Ω , use the function control keys

Lo ÷	10.00)0 <u>3</u> 6	$\Omega^{_2}$ Wire	
10 Ω On	Fixed Val	ue		
RANGE	STORE	UNDO	EXIT	

7. To undo the adjustment before storing the changes, press the UNDO soft key

This will remove any changes that have been made to the output of the calibrator.

7. Measure and check the output again and then press **STORE** soft key The following 2 screens are displayed briefly to confirm that the calibration factors have been saved.

Note: All the calibration points can be adjusted prior to storing the calibration factors (STORE), however if the calibration routine is ended or there is a power failure the new calibration factors will not be saved if STORE has not been pressed.

56. When calibration of this range is complete press the **RANGE** soft key, Select '2 Wire Ω ', and then select the required range.

Select Function DC Volts 2 Wire Ω Induct. Power DC	on DC Amps 4 Wire Ω PRT A/D Input	AC Volts Active Ω Scope	AC Amps Capacit. Power AC
SELECT			CANCEL
Select Range			
0Ω	0.1 Ω	1Ω [10 Ω
100 Ω	1 kΩ	10 kΩ	100 kΩ
1 MΩ	10 MΩ	100 MΩ	1 GΩ
SELECT			CANCEL
2. 			

57. The '0 mΩ', '100 mΩ,'1Ω', '10Ω', '1 kΩ', '10 kΩ', '100 kΩ', '1 MΩ', '10 MΩ', '100 MΩ' and '1 GΩ' ranges are calibrated in the same manner.

To calibrate the 4Wire Ω parameter, complete the procedure as follows:

NOTE : The 4Wire Ω output from the 3000A series calibrator is a passive output. This means that the value on the display is the resistance value generated at the terminals.

The resistance cannot be 'altered' to a different output; the value stored is simply the value of the resistor and the connections to the terminal.

For a variable resistance output, the Active Resistance output must be used.

1. Select **CALIBRATE** using the soft key

2. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required parameter '4 Wire Ω ' and then press **SELECT** soft key

Select Func DC Volts 2 Wire Ω Induct. Power DC	tion DC Amps 4 Wire Ω PRT A/D Input	AC Volts Active Ω Scope	AC Am Capac Power	nps it. AC
SELEC	⊺ ◀┼─┘			CANCEL

3. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required range e.g.

'10 Ω ' and	then press	SELECT SO	oft key	
	Select Rar 0 Ω 100 Ω	nge 0.1 Ω 1 kΩ	1 Ω 10 kΩ	10 Ω 100 kΩ
	SELE	СТ		CANCEL

3. The Calibrator will now change to the 10 Ω 4 Wire range.

4. Connect the calibrator Voltage and Low current output terminals (4 wire resistance) to the precision multimeter. Ensure that the multimeter is nulled with the calibrator set to the 0R range. The 4 wire resistance output is measured relative to the calibrator zero output value

Note that it is typical that the 4 Wire value will be lower than the corresponding 2 Wire value. This is due to the 4 Wire measurement value compensating for errors in the internal connections inside the calibrator

6. To adjust the output enter the value as measured on the multimeter

E.g. measured output = 9.99997 Ω , use the function control keys

Lo ÷	9.99	9 <u>84</u>	Ω 4 WIRE	
10 Ω On	Fixed Val	ue		
RANGE	STORE	UNDO	EXIT	

7. To undo the adjustment before storing the changes, press the UNDO soft key

Lo ÷ 10 Ω On	9.99 Fixed Val	99 <u>7</u>	A WIRE
RANGE	STORE	UNDO	EXIT

This will remove any changes that have been made to the output of the calibrator.

7. Measure and check the output again and then press **STORE** soft key The following 2 screens are displayed briefly to confirm that the calibration factors have been saved.

Note: All the calibration points can be adjusted prior to storing the calibration factors (STORE), however if the calibration routine is ended or there is a power failure the new calibration factors will not be saved if STORE has not been pressed.

56. When calibration of this range is complete press the **RANGE** soft key, Select '4 Wire Ω ', and then select the required range.

Select FunctionDC VoltsDC Amps2 Wire Ω 4 Wire Ω Induct.PRTPower DCA/D Input	AC Volts Active Ω Scope	AC Amps Capacit. Power AC
SELECT		CANCEL
Select Range		
0 mΩ 100 mΩ	1Ω	10 Ω
100 Ω 1 KΩ	10 kΩ	100 kΩ
SELECT		CANCEL

57. The '0 mΩ', '100 mΩ,'1Ω', '10Ω', '1 kΩ', '10 kΩ' and '100 kΩ' ranges are calibrated in the same manner.

Active Ω

To calibrate the Active Ω parameter, complete the procedure as follows:

The Active Ω output of the 3000A series is available as a 2 Wire output only, however the output can be varied to any output

1. Select **CALIBRATE** using the soft key

2. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required parameter '4

3. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required range e.g.

'10 Ω ' and then press **SELECT** soft key

3. The Calibrator will now change to the 100 Ω Active Resistance range. Using the Range up / Range Down keys, select the 'Zero Calibration' adjustment point

Lo ÷	30.0	Ω 0(АСТ
100 Ω Standby	Zero Calibrati	on 👞	
RANGE	STORE	UNDO	EXIT

4. Connect the calibrator Voltage output terminals (Active Resistance output)

Ensure that the multimeter has been zeroed with the leads shorted. If applicable use low current resistance (Low I) measurement modes. This is because active resistance is a lower accuracy output typically used for calibration of 3 $\frac{1}{2}$ and 4 $\frac{1}{2}$ digit multimeters that use lower measurement currents.

- 6. To adjust the output enter the value as measured on the multimeter
- E.g. measured output = 29.95 Ω , use the function control keys

Lo ÷	30.0	Ω 0(ACT	
100 Ω On	Zero Calibrati	on		
RANGE	STORE	UNDO	EXIT	-

SHIFT

7. To undo the adjustment before storing the changes, press the UNDO soft key

This will remove any changes that have been made to the output of the calibrator.

7. Measure and check the output again and then press **STORE** soft key The following 2 screens are displayed briefly to confirm that the calibration factors have been saved.

	Storing	
	Calibration Stored	
After displa	lying these messages, the shift key will also cease to be illumina	Ited

Note: All the calibration points can be adjusted prior to storing the calibration factors (STORE), however if the calibration routine is ended or there is a power failure the new calibration factors will not be saved if STORE has not been pressed.

Press the Range Up / Range Down keys until 'Full Scale Calibration' is displayed

Measure the output, and adjust as required using the steps previously described.

If the 'Full Scale Calibration' has been adjusted, ensure that the 'Zero Calibration' point is still in calibration. It may require more than one cycle of adjusting the Zero and Full Scale calibration points to bring both points into specification.

56. When calibration of this range is complete press the **RANGE** soft key, Select 'Active Ω ', and then select the required range.

$\begin{array}{llllllllllllllllllllllllllllllllllll$	AC Volts Active Ω Scope	AC Amps Capacit. Power AC
SELECT		CANCEL
Select Range 100 Ω 1 kΩ 1 MΩ 10 MΩ	10 kΩ	100 kΩ
SELECT		CANCEL

57. The '10 Ω ', '100 Ω , '1 k Ω ', '10 k Ω ', '100 k Ω ', '1 M Ω ' and '10 M Ω ' ranges are calibrated in the same manner.

Capacitance

To calibrate the Capacitance parameter, complete the procedure as follows:

NOTE : The Capacitance output from the 3000A series calibrator is a passive output. This means that the value on the display is the capacitance value generated at the terminals.

The capacitance cannot be 'altered' to a different output, the value stored is simply the value of the capacitor and the connections to the terminal.

1. Select **CALIBRATE** using the soft key

^{Lo} (0.00	<u>0</u> 00n	nV
200mV DC Standby			DC
- CALIBRATE	SETUP	INFO	NEXT

2. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required parameter

'Capacit.' and th	ien press <mark>s</mark>	ELECT	soft key		
Sel DC 2 V Ind Pov	ect Function Volts D Vire Ω 4 uct. F wer DC A	OC Amps Wire Ω PRT /D Input	AC Volts Active Ω Scope	AC An Capad Power	nps sit r AC
	SELECT <				CANCEL

3. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required range e.g.

Select Range 1nF 10 100nF 1µ 1mF 10	IF 20nF 50nF 10μF 100μF ոF
SELECT -	CANCEL

'1uF ' and then press SELECT soft key

3. The Calibrator will now change to the 1uF Capacitance range.

4. Connect the calibrator Voltage (Capacitance) terminals to the LCR Bridge. To ensure an accurate measurement connect as a 4 wire measurement, with both positive leads connected together. Ensure that the LCR Bridge is nulled before connecting to the Calibrator

6. To adjust the output enter the value as measured on the multimeter E.g. measured output = 1.0016 uF, use the function control keys

	1.00)2 <u>3</u> μ	F	
On	Fixed Value		1μF	
RANGE	STORE	UNDO	EXIT	

7. To undo the adjustment before storing the changes, press the UNDO soft key

This will remove any changes that have been made to the output of the calibrator.

7. Measure and check the output again and then press **STORE** soft key The following 2 screens are displayed briefly to confirm that the calibration factors have been saved.

Note: All the calibration points can be adjusted prior to storing the calibration factors (STORE), however if the calibration routine is ended or there is a power failure the new calibration factors will not be saved if STORE has not been pressed.

56. When calibration of this range is complete press the **RANGE** soft key, Select '2 Wire Ω ', and then select the required range.

Select Function DC Volts DC 2 Wire Ω 4 V Induct. PR Power DC A/D	Amps AC Volts Vire Ω Active Ω T Scope D Input	AC Amps Capacit. Power AC	
SELECT		CANCEL	
Select Range 1nF 10nl 100nF <u>1µF</u> 1mF 10m	= 20nF 10μF F	50nF 100μF	
SELECT		CANCEL	

57. The '1nF', '10nF', '20nF', '50nF', '100nF', '10uF' and '100uF' ranges are calibrated in the same manner.

The 1mF and 10mF ranges are simulated

Frequency Output

Information to be added in next revision of Calibration manual.

Please note that there is no adjustment of the frequency output available from the front panel, this is adjusted manually on the top board of the calibrator.

Inductance

To calibrate the Capacitance parameter, complete the procedure as follows:

NOTE : The Inductance output from the 3000A series calibrator is a passive output. This means that the value on the display is the Inductance value generated at the terminals.

The Inductance cannot be 'altered' to a different output, the value stored is simply the value of the inductor and the connections to the terminal.

1. Select **CALIBRATE** using the soft key

* (0.000	000n	nV
200mV DC Standby	-	_	DC
	SETUD	INFO	NEVT

2. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required parameter 'Capacit.' and then press **SELECT** soft key

Select Function DC Volts DC Amps 2 Wire Ω 4 Wire Ω Induct. PRT Power DC A/D Input	AC Volts Active Ω Scope	AC Amps Capacit. Power AC
SELECT		CANCEL

3. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required range e.g.'100mH ' and then press **SELECT** soft key

3. The Calibrator will now change to the 100mH Inductance range.

4. Connect the calibrator Voltage (Inductance) terminals to the LCR Bridge. To ensure an accurate measurement connect as a 4 wire measurement, with both positive leads connected together. Ensure that the LCR Bridge is nulled before connecting to the Calibrator

6. To adjust the output enter the value as measured on the multimeter E.g. measured output = 100.65 mH, use the function control keys

	101.	2 <u>5</u> m	Н
100mH On F	ixed Value	•	100mH
RANGE	STORE	UNDO	EXIT

7. To undo the adjustment before storing the changes, press the UNDO soft key

This will remove any changes that have been made to the output of the calibrator.

7. Measure and check the output again and then press **STORE** soft key The following 2 screens are displayed briefly to confirm that the calibration factors have been saved.

Note: All the calibration points can be adjusted prior to storing the calibration factors (STORE), however if the calibration routine is ended or there is a power failure the new calibration factors will not be saved if STORE has not been pressed.

56. When calibration of this range is complete press the **RANGE** soft key, Select '2 Wire Ω ', and then select the required range.

$\begin{array}{llllllllllllllllllllllllllllllllllll$	AC Volts Active Ω Scope	AC Amps Capacit. Power AC	
SELECT		CANCEL	
Select Range 1mH 10mH 50mH 100mH	19mH 1H	29mH 10H	
SELECT		CANCEL	-

57. The '1mH', '10mH', '19mH', '29mH', '50mH', '1H' and '10H' ranges are calibrated in the same manner.

To calibrate the Capacitance parameter, complete the procedure as follows:

NOTE : The PRT output from the 3000A series calibrator is a passive output. This means that the value on the display is the Temperature (Based on R0=100) value generated at the terminals.

The Temperature value cannot be 'altered' to a different output, the value stored is simply the value of the resistor and the connections to the terminal.

1. Select **CALIBRATE** using the soft key

*	0.00	000n	nV
200mV DC Standby	-	_	DC
CALIBRATE	SETUP	INFO	NEXT

2. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required parameter 'PRT' and then press **SELECT** soft key

	Select Function DC Volts DC 2 Wire Ω 4 V Induct. PF Power DC A/I	C Amps Nire Ω RT D Input	AC Volts Active Ω Scope	AC Amps Capacit. Power AC	
--	--	-----------------------------------	-------------------------------	---------------------------------	--

3. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required range e.g. 'PRT 100 °C ' and then press **SELECT** soft key

Select Range PRT -100°C PRT PRT 100°C PRT	0°C PRT 30°C 200°C PRT 400°C	PRT 60°C PRT 800°C
SELECT		CANCEL

3. The Calibrator will now change to the 100 °C PRT range.

4. Connect the calibrator Voltage and Current terminals to the precision Multimeter using 4 wire connection methods. If available, set the reference multimeter to Temperature mode, otherwise use lookup tables to convert the indicated resistance to temperature.

6. To adjust the output enter the value as measured on the multimeter

E.g. measured output = 100.013 °C, use the function control keys

	100.	0 <u>4</u> 6 °	°C	
PRT 100°C On F	Fixed Value	•	PRT 100°C	
RANGE	STORE	UNDO	EXIT	-

7. To undo the adjustment before storing the changes, press the **UNDO** soft key

This will remove any changes that have been made to the output of the calibrator.

7. Measure and check the output again and then press **STORE** soft key The following 2 screens are displayed briefly to confirm that the calibration factors have been saved.

Note: All the calibration points can be adjusted prior to storing the calibration factors (STORE), however if the calibration routine is ended or there is a power failure the new calibration factors will not be saved if STORE has not been pressed.

56. When calibration of this range is complete press the **RANGE** soft key, Select '2 Wire Ω ', and then select the required range.

57. The 'PRT -100 °C', 'PRT 0°C', 'PRT 30°C', 'PRT 60°C', 'PRT 200°C', 'PRT 400°C' and 'PRT 800°C' ranges are calibrated in the same manner.

Oscilloscope – Amplitude

1. Select **CALIBRATE** using the soft key

2. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required parameter

Scope' and	d then press	SELECT Soft	key	
	Select Func DC Volts 2 Wire Ω Induct. Power DC	tion DC Amps 4 Wire Ω PRT A/D Input	AC Volts Active Ω Scope	AC Amps Capacit. Power AC
	SELEC	Т		CANCEL

3. Use the 'Digital Control' or the 'Arrow Keys' to highlight the 10mV/Div range and then press **SELECT** soft key

Select Range 10mV/Div ◀	100mV/Div	Bandwidth	50kHz Ref	
SELECT			CANCEL	_

3. The Calibrator will now change to the 10mV/Division Oscilloscope Amplitude range.

4. Connect the calibrator Oscilloscope output to the precision digital multimeter. Set the 100mV DC voltage range. Normally the Oscilloscope Amplitude output is a levelled square AC Voltage output, however in the calibration mode this is set to a levelled DC waveform. This allows more accurate measurement than low level AC Voltage measurements

6. To adjust the output enter the value as measured on the multimeter

E.g. measured output = 59.9985 mV, use the function control keys

	60.0	0 <u>00</u>	mV
10mV/Div On S	Cope Amplitude		10mV/Div
RANGE	STORE	UNDO	EXIT

7. To undo the adjustment before storing the changes, press the UNDO soft key

This will remove any changes that have been made to the output of the calibrator.

7. Measure and check the output again and then press **STORE** soft key The following 2 screens are displayed briefly to confirm that the calibration factors have been saved.

	Storing	
	Calibration Stored	
After display	ving these messages, the shift key will also cease to be illumina	atec

Note: All the calibration points can be adjusted prior to storing the calibration factors (STORE), however if the calibration routine is ended or there is a power failure the new calibration factors will not be saved if STORE has not been pressed.

SHIFT

When calibration of this range is complete press the **RANGE** soft key,

The Oscilloscope Amplitude output has two calibration points to be adjusted, the 10mV/Div output and the 100mV/Div output.

2. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required parameter

Scope' and	d then press	SELECT soft	key	
	Select Func DC Volts 2 Wire Ω Induct. Power DC	tion DC Amps 4 Wire Ω PRT A/D Input	AC Volts Active Ω Scope	AC Amps Capacit.] Power AC
	SELEC	Т		CANCEL

3. Use the 'Digital Control' or the 'Arrow Keys' to highlight the 100mV/Div range and then press **SELECT** soft key

Select Range 10mV/Div <u>1</u> (00mV/Div ← Bandwidth	50kHz Ref
SELECT		CANCEL

3. The Calibrator will now change to the 100mV/Division Oscilloscope Amplitude range.

	0.60	000	V
100mV/Div Standby	Scope Amplitude		100mV/Div
RANGE	STORE	UNDO	EXIT

5. Press	OUTPUT ON and measure the output.					
		0.60	<u>0</u> 000	V		
	100mV/Div On	Scope Amplitude		100mV/Div		
	TANOL	STORE	UNDO			

If required, adjust the output as previously described, either typing in the measured value or deviating the output of the calibrator using the cursor and the arrow keys / digital control.

To complete the calibration, press the **STORE** key

Oscilloscope – Bandwidth

1. Select CALIBRATE using the soft key

2. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required parameter

Scope' and then pre	SS SELECT SOF	it key		
Select F DC Volts 2 Wire C Induct. Power D	unction DC Amps 4 Wire Ω PRT C A/D Input	AC Volts Active Ω Scope	AC An Capac Power	nps sit. • AC
→ SEL	ECT			CANCEL

3. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required parameter 'Bandwidth' and then press **SELECT** soft key

Select Range 10mV/Div 100mV/Div [Bandwidth 50kHz Ref
SELECT	CANCEL

3. The Calibrator will now change to the Scope Bandwidth Function. Use the Range Up / Range Down keys to select the required Scope Bandwidth adjustment point

4. Connect oscilloscope to the SCOPE terminal on the front panel. Ensure that the oscilloscope is set to 50 Ohm input impedance

5. Set the oscilloscope to 100mV/Division

6. To adjust the output enter the value as measured on the oscilloscope

E.g. measured output = 610.00 mV, use the function control keys

7. To undo the adjustment before storing the changes, press the **UNDO** soft key

This will remove any changes that have been made to the output of the calibrator.

7. Measure and check the output again and then press **STORE** soft key The following 2 screens are displayed briefly to confirm that the calibration factors have been saved.

Note: All the calibration points can be adjusted prior to storing the calibration factors (STORE), however if the calibration routine is ended or there is a power failure the new calibration factors, will not be saved if STORE has not been pressed.

8. Use the 'range up' and 'range down' keys to change the calibration point to

- **10.** Adjust as steps **ASJDASJDASDJ**.
- 11. Continue adjustment until 260MHZ (SCP250) / 360MHz (SCP350) / 620MHz (SCP600) point has been adjusted
- **12.** Verify Bandwidth Output flatness by performing a sweep of the full frequency range, ensuring that flatness is achieved across the full range of the oscilloscope function.

AC Power (Current Output)

1. Select **CALIBRATE** using the soft key

2. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required parameter

Power AC	and then pr	ess select	soft key	
	Select Func DC Volts 2 Wire Ω Induct. Power DC	tion DC Amps 4 Wire Ω PRT A/D Input	AC Volts Active Ω Scope	AC Amps Capacit. Power AC
	→ SELEC	Т		CANCEL

3. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required parameter '200uA AC' and then press **SELECT** soft key

Select Range 200μA AC 2n 2A AC 30	A AC 20mA AC A AC	200mA AC
SELECT		CANCEL

3. The Calibrator will now change to the 200uA AC range. Use the Range Up / Range Down keys to select the 60Hz Positive Full Scale adjustment point

4. Connect the calibrator output voltage terminals to the precision multimeter. Ensure that the multimeter is in AC Current on the appropriate range. Ensure that the correct terminals / current shunt is used for the various current outputs. The 3000A calibrators can output up to 30A AC current, which can blow the fuse / cause damage if the incorrect input is used

6. To adjust the output enter the value as measured on the multimeter

E.g. measured output = 99.90 uA, use the function control keys

Lo ÷	100.0	0μΑ		
200μA AC On	Positive Full Scale	2	60Hz 200μA AC	
RANGE	STORE	UNDO	EXIT	
6. The 'SHIFT' key will illuminate to indicate that a change has been made to the calibration of the instrument, however has not yet been stored.

This will remove any changes that have been made to the output of the calibrator.

7. Measure and check the output again and then press **STORE** soft key The following 2 screens are displayed briefly to confirm that the calibration factors have been saved.

	Storing	
	Calibration Stored	
After display	ying these messages, the shift key will also cease to be illumina	itec

Note: All the calibration points can be adjusted prior to storing the calibration factors (STORE), however if the calibration routine is ended or there is a power failure the new calibration factors will not be saved if STORE has not been pressed.

8. Use the 'range up' and 'range down' keys to change the calibration point to

NOTE : The 'Zero Calibration' of the AC Current ranges is performed at **20% of full** scale

- 9. Measure the output as before; if necessary adjust as previously described above.
- 11. Measure the output as before; if necessary adjust as previously described above.

56. When calibration of this range is complete press the **RANGE** soft key Select 'AC Current' and then '2mA AC' and proceed with this range as described above.

Select FunctionDC VoltsDC Amps2 Wire Ω 4 Wire Ω Induct.PRTPower DCA/D Input	AC Volts Active Ω Scope	AC Amps Capacit. Power AC
SELECT		CANCEL
Select Range 200μA AC 2mA AC 2A AC 30A AC	20mA AC	200mA AC
SELECT		CANCEL

57. The '2mA AC', '20mA AC', '200mA AC', '2A AC' and '30A AC' ranges are calibrated in the same manner.

Remember to change the connections when calibrating the <u>30A range</u>

DC Power (Current Output)

1. Select **CALIBRATE** using the soft key

2. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required parameter 'Power DC' and then press **SELECT** soft key

Select Fund	ction		
DC Volts	DC Amps	AC Volts	AC Amps
2 Wire Ω	4 Wire Ω	Active Ω	Capacit.
Induct.	PRT	Scope	Power AC
→ Power DC	A/D Input		
i onor b o			
	т		

3. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required parameter '200uA DC' and then press **SELECT** soft key

Select Range 200µA DC 2n 2A DC 30	IA DC 20mA DC A DC	200mA DC
SELECT		CANCEL

3. The Calibrator will now change to the 200uA DC range. Use the Range Up / Range Down keys to select the Positive Full Scale adjustment point

4. Connect the calibrator output voltage terminals to the precision multimeter. Ensure that the multimeter is in DC Current on the appropriate range. Ensure that the correct terminals / current shunt is used for the various current outputs. The 3000A calibrators can output up to 30A AC current, which can blow the fuse / cause damage if the incorrect input is used

6. To adjust the output enter the value as measured on the multimeter

E.g. measured output = 99.90 uA, use the function control keys

5. The output can also be adjusted by moving the 'cursor' to the required digit and adjusting the output using the up / down arrows or the digital control

Lo ÷	00.00)μΑ		
200µA DC Standby P	ositive Full Sca	le	DC 200μA DC	
RANGE	STORE	UNDO	EXIT	

6. The 'SHIFT' key will illuminate to indicate that a change has been made to the calibration of the instrument, however has not yet been stored.

7. To undo the adjustment before storing the changes, press the **UNDO** soft key

This will remove any changes that have been made to the output of the calibrator.

7. Measure and check the output again and then press **STORE** soft key The following 2 screens are displayed briefly to confirm that the calibration factors have been saved.

	Storing	
	Calibration Stored	
After displa	ying these messages, the shift key will also cease to be illumina	ated

Note: All the calibration points can be adjusted prior to storing the calibration factors (STORE), however if the calibration routine is ended or there is a power failure the new calibration factors will not be saved if STORE has not been pressed.

8. Use the 'range up' and 'range down' keys to change the calibration point to 'Zero Calibration'.

Lo ÷	20.0	ΟΟμΑ	
200µA <mark>DC</mark> Standb y → Z	ero Calibration		DC 200μA DC
RANGE	STORE	UNDO	EXIT

- 9. Measure the output as before; if necessary adjust as previously described above.
- 11. Measure the output as before; if necessary adjust as previously described above.

56. When calibration of this range is complete press the **RANGE** soft key Select 'DC Current' and then '2mA ' and proceed with this range as described above.

Select Function					
DC Volts	DC Amps	AC Volts	AC Amps		
2 Wire Ω	4 Wire Ω	Active Ω	Capacit.		
Induct.	PRT	Scope	Power AC		
Power DC	A/D Input				
SELECT			CANCEL		
-	1				

Select Range 200µA DC 2n 2A DC 30	nA DC 20r)A DC	nADC 200m/	A DC
SELECT			CANCEL

57. The '2mA DC', '20mA DC', '200mA DC', '2A DC' and '30DC' ranges are calibrated in the same manner.

Remember to change the connections when calibrating the <u>30A range</u>

A/D Input

Injecting voltage between Pins 7 (Ground) and 9 (Input), the 3000A series calibrator can measure voltage. This is used for adapters with readback (such as EA001A, EA015 etc) as well as Pressure and Torque Modules

1. Select CALIBRATE using the soft key

* (0.00	000n	nV
200mV DC Standby	-	_	DC
CALIBRATE	SETUP	INFO	NEXT

2. Use the 'Digital Control' or the 'Arrow Keys' to highlight the required parameter

'A/D Input' and then press **SELECT** soft key

3. The Calibrator will now change to the A/D Input Screen. Use the Range Up / Range Down keys to select the Zero Calibration adjustment point

Lo ÷	^{Lo} -0.0103V				
Apply 0 V then STORE Standby Zero Calibration					
R	ANGE	STORE	UNDO	EXIT	
				•	

4. Apply an output of 0V from your voltage source to the adapter interface, using Pin7 as the Ground or Negative connection, and Pin 9 as the Signal or Positive connection.

5. Wait for the reading to stabilise on the screen of the 3000A. After achieving a stable reading, press the 'Store' button.

+-0.0103V				
Apply 0 V then STORE Standby Zero Calibration				
RANGE	STORE	UNDO	EXIT	

7. The following 2 screens are displayed briefly to confirm that the calibration has been saved.

The screen of the 3000A will now display 0V. If the reading is different, repeat the previous stages

^{Lo} 0.000V					
Apply 0 V then STORE Standby Zero Calibration					
RANGE	STORE	UNDO	EXIT		

3. Using the Range Up / Range Down keys to select the Positive Full Scale adjustment point

Lo ÷	[*] 10.0024V					
Stan	Apply 10 V then STORE Standby Positive Full Scale					
R	ANGE	STORE	UNDO	EXIT		

4. Apply an output of 10V from your voltage source to the adapter interface, using Pin 7 as the Ground or Negative connection, and Pin 9 as the Signal or Positive connection.

5. Wait for the reading to stabilise on the screen of the 3000A. After achieving a stable reading, press the 'Store' button.

7. The following 2 screens are displayed briefly to confirm that the calibration has been saved.

The screen of the 3000A will now display 10V. If the reading is different, repeat the previous stages

3. Using the Range Up / Range Down keys, select the Negative Full Scale point, and repeat the